13 The Dempster - Shafer Theory of Evidence
نویسنده
چکیده
The drawbacks of pure probabilistic methods and of the certainty factor model have led us in recent years to consider alternate approaches. Particularly appealing is the mathematical theory of evidence developed by Arthur Dempster. We are convinced it merits careful study and interpretation in the context of expert systems. This theory was first set forth by Dempster in the 1960s and subsequently extended by Glenn Sharer. In 1976, the year after the first description of CF’s appeared, Shafer published A Mathematical Theory of Evidence (Shafer, 1976). Its relevance to the issues addressed in the CF model was not immediately recognized, but recently researchers have begun to investigate applications of the theory to expert systems (Barnett, 1981; Friedman, 1981; Garvey et al., 1981). We believe that the advantage of the Dempster-Shafer theory over previous approaches is its ability to model the narrowing of the hypothesis set with the accumulation of evidence, a process that characterizes diagnostic reasoning in medicine and expert reasoning in general. An expert uses evidence that, instead of bearing on a single hypothesis in the original hypothesis set, often bears on a larger subset of this set. The functions and combining rule of the Dempster-Shafer theory are well suited to represent this type of evidence and its aggregation. For example, in the search for the identity of an infecting organism, a smear showing gram-negative organisms narrows the hypothesis set of all possible organisms to a proper subset. This subset can also be thought of as a new hypothesis: the organism is one of the gram-negative organisms. However, this piece of evidence gives no information concerning the relative likelihoods of the organisms in the subset. Bayesians might assume equal priors and distribute the weight of this evidence equally among the gram-negative organisms, but, as Shafer points out, they would thus fail to distinguish between uncertainty, or lack of" knowledge, and
منابع مشابه
A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence
This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...
متن کاملA NEW FUZZY MORPHOLOGY APPROACH BASED ON THE FUZZY-VALUED GENERALIZED DEMPSTER-SHAFER THEORY
In this paper, a new Fuzzy Morphology (FM) based on the GeneralizedDempster-Shafer Theory (GDST) is proposed. At first, in order to clarify the similarity ofdefinitions between Mathematical Morphology (MM) and Dempster-Shafer Theory (DST),dilation and erosion morphological operations are studied from a different viewpoint. Then,based on this similarity, a FM based on the GDST is proposed. Unlik...
متن کاملA Study on Properties of Dempster-Shafer Theory to Probability Theory transformations
In this paper, five conditions that have been proposed by Cobb and Shenoy are studied for nine different mappings from the Dempster-Shafer theory to the probability theory. After comparing these mappings, one of the considerable results indicates that none of the mappings satisfies the condition of invariance with respect to the marginalization process. In more details, the main reason for this...
متن کاملمحاسبه فاصله عدم قطعیت بر پایه آنتروپی شانون و تئوری دمپستر-شافر از شواهد
Abstract Dempster Shafer theory is the most important method of reviewing uncertainty for information system. This theory as introduced by Dempster using the concept of upper and lower probabilities extended later by Shafer. Another important application of entropy as a basic concept in the information theory can be used as a uncertainty measurement of the system in specific situation In th...
متن کاملREGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY
Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...
متن کاملTackling uncertainty in safety risk analysis in process systems: The case of gas pressure reduction stations
Industrial plants are subjected to very dangerous events. Therefore, it is very essential to carry out an efficient risk and safety analysis. In classical applications, risk analysis treats event probabilities as certain data, while there is much penurious knowledge and uncertainty in generic failure data that will lead to biased and inconsistent alternative estimates. Then, in order to achieve...
متن کامل